23 research outputs found

    Foraminiferal morphogroups in dysoxic shelf deposits from the Jurassic of Spitsbergen

    Get PDF
    Analysis of benthic foraminiferal assemblages was performed in Bathonian to Kimmeridgian deposits through a section covering the lower half of the Agardhfjellet Formation in central Spitsbergen. The section consists mainly of organic-rich shales, which contain low-diversity agglutinated assemblages. In this foraminiferal succession five morphogroups were differentiated according to shell architecture (general shape, mode of coiling and number of chambers), integrated with the supposed microhabitat (epifaunal, shallow infaunal and deep infaunal) and feeding strategy (suspension-feeder, herbivore, bacterivore, etc.). The environmental evolution of the analysed section is interpreted by using the stratigraphic distribution of morphogroups, combined with species diversities and sedimentary data, in a sequence stratigraphic framework. The section comprises two depositional sequences, which demonstrate that species diversity and relative frequency of morphogroups are correlative with transgressive–regressive trends controlling depth and oxygenation of the water column. In both sequences, the maximum flooding interval is characterized by increased organic carbon content, dominance of the epifaunal morphogroups and reduced species diversity: features reflecting the increased degree of stagnation separating the transgressive phase from the regressive phase.The participation of J. Nagy in this research has been supported by the Statoil/Hydro VISTA programme. The contribution of M. Reolid and F.J. Rodríguez-Tovar has been supported by the projects CGL2005-06636-C0201 and CGL2005-0316/BTE, the EMMI group (RNM-178, Junta de Andalucía) and the Acción Integrada 30.AI.PO.1300 (University of Granada–University of Oslo). A grant of the Universidad de Jaén financed M. Reolid’s short stay at the University of Oslo

    Foraminiferal assemblages as palaeoenvironmental bioindicators in Late Jurassic epicontinental platforms: relation with trophic conditions

    Get PDF
    Foraminiferal assemblages from the neritic environment reveal the palaeoecological impact of nutrient types in relation to shore distance and sedimentary setting. Comparatively proximal siliciclastic settings from the Boreal Domain (Brora section, Eastern Scotland) were dominated by inner−shelf primary production in the water column or in sea bottom, while in relatively seawards mixed carbonate−siliciclastic settings from the Western Tethys (Prebetic, Southern Spain), nutrients mainly derived from the inner−shelf source. In both settings, benthic foraminiferal assemblages increased in diversity and proportion of epifauna from eutrophic to oligotrophic conditions. The proximal setting example (Brora Brick Clay Mb.) corresponds to Callovian offshore shelf deposits with a high primary productivity, bottom accumulation of organic matter, and a reduced sedimentation rate for siliciclastics. Eutrophic conditions favoured some infaunal foraminifera. Lately, inner shelf to shoreface transition areas (Fascally Siltstone Mb.), show higher sedimentation rates and turbidity, reducing euphotic−zone range depths and primary production, and then deposits with a lower organic matter content (high−mesotrophic conditions). This determined less agglutinated infaunal foraminifera content and increasing calcitic and aragonitic epifauna, and calcitic opportunists (i.e., Lenticulina). The comparatively distal setting of the Oxfordian example (Prebetic) corresponds to: (i) outer−shelf areas with lower nutrient input (relative oligotrophy) and organic matter accumulation on comparatively firmer substrates (lumpy lithofacies group) showing dominance of calcitic epifaunal foraminifera, and (ii) mid−shelf areas with a higher sedimentation rate and nutrient influx (low−mesotrophic conditions) favouring potentially deep infaunal foraminifers in comparatively unconsolidated and nutrient−rich substrates controlled by instable redox boundary (marl−limestone rhythmite lithofacies).This research was carried out with the financial support of projects CGL2005−06636−C0201 and CGL2005−01316/BTE, and University of Oslo, Norway−Statoil cooperation. M.R. holds a Juan de la Cierva grant from the Ministry of Science and Technology of Spain

    Palaeoenvironment of Eocene prodelta in Spitsbergen recorded by the trace fossil Phycosiphon incertum

    Get PDF
    Ichnological, sedimentological and geochemical analyses were conducted on the Eocene Frysjaodden Formation in order to interpret palaeoenvironment prodelta sediments in the Central Basin of Spitsbergen. Phycosiphon incertum is the exclusive ichnotaxon showing differences in size, distribution, abundance and density, and relation to laminated/bioturbated intervals. Large P. incertum mainly occur dispersed, isolated and randomly distributed throughout the weakly laminated/non-laminated intervals. Small P. incertum occur occasionally in patches of several burrows within laminated intervals or as densely packed burrows in thin horizons in laminated intervals or constituting fully bioturbated intervals that are several centimetres thick. Ichnological changes are mainly controlled by oxygenation, although the availability of benthic food cannot be discarded. Changes in oxygenation and rate of sedimentation can be correlated with the registered variations in the Bouma sequence of the distal turbiditic beds within prodeltal shelf sediments.Funding for this research was provided by Project CGL2012-33281 (Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain), Project RYC-2009-04316 (Ramón y Cajal Programme) and Projects RNM-3715 and RNM-7408 and Research Group RNM-178 (Junta de Andalucía). The authors benefited from a bilateral agreement between the universities of Granada and Oslo, supported by the University of Granada

    Ungarische ethnographische Gruppen und Forschungen in der Sozialistischen Republik Rumänien

    No full text

    Oil exploration in Spitsbergen, 1965 and 1966

    No full text

    Oil exploration in Spitsbergen, 1967

    No full text
    corecore